728x90
반응형
SMALL
import numpy as np
numpy : 리스트의 확장판 (데이터 연산, 통계분석)
pandas : numpy의 확장판
용어 정리
- scalar : 상수값(10,3.14,'korea')
- vector(1차원) : [10,20,30]
- matrix(2차원) : [[10,20,30],[100,200,300]] 2X3
- 3차원 : [[[10,20,30],[100,200,300]],[[10,20,30],[100,200,300]]] 2X2X3
ndarray 생성 방법 #1
arr1 = np.array([10,20,30])
print(type(arr1))
print(arr1)
arr1
[OUT] :
<class 'numpy.ndarray'>
[10 20 30]
array([10, 20, 30])
arr2 = np.array([[10,20,30],[100,200,300]])
print(arr2)
[OUT] :
[[ 10 20 30]
[100 200 300]]
ndarray 생성방법 #2
arr3 = np.arange(1,11,1) #1<=arr<11 1씩 증가
arr3
[OUT] :
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
arr4 = np.arange(1,11,2) #1<=arr<11 2씩 증가
arr4
[OUT] :
array([1, 3, 5, 7, 9])
ndarray 생성방법 #3
arr5 = np.random.randint(1,11, size = 5)
arr5
[OUT] :
array([10, 4, 9, 3, 4])
arr6 = np.random.randint(1,11, size=(3,2))
arr6
[OUT] :
array([[5, 1],
[8, 9],
[1, 5]])
np.random 함수들
- np.random.rand()
- np.random.randn()
- np.random.choice()
np.random 예제
np.random.rand(5) #0~1 사이 실수값 반환
[OUT] :
array([0.98382111, 0.18553758, 0.73721467, 0.51819931, 0.54414999])
np.random.rand(2,3) #0~1 사이 실수값 반환
[OUT] :
array([[0.50269684, 0.99471141, 0.78622809],
[0.55129012, 0.81742335, 0.94890873]])
np.random.randn(5) #표준정규분포(평균0,편차1)
[OUT] :
array([ 0.30914633, -0.65225275, -1.04330159, -0.63258296, -1.19028071])
np.random.randn(2,3)
[OUT] :
array([[-0.10451618, -0.87200105, 1.46165221],
[ 0.65454683, -0.65742383, 0.18644771]])
np.random.choice([1,2,3,4,5],)
[OUT] :
5
np.random.choice(np.arange(1,11),5)
[OUT] :
array([6, 6, 7, 9, 3])
numpy 여러 함수들
- np.float32()
- np.array()
- np.ones()
- np.zeros()
- np.eye()
- np.linspace()
- np.unique()
- zip()
numpy 여러 함수들 예제
np.float32([1,2,3,4,5])
[OUT] :
array([1., 2., 3., 4., 5.], dtype=float32)
np.array([1,2,3,4,5],dtype=np.str)
[OUT] :
array(['1', '2', '3', '4', '5'], dtype='<U1')
np.ones(3)
[OUT] :
array([1., 1., 1.])
np.ones((3,3))
[OUT] :
array([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]])
np.zeros(3)
[OUT] :
array([0., 0., 0.])
np.eye(3)
[OUT] :
array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
np.linspace(1,10)
[OUT] :
array([ 1. , 1.18367347, 1.36734694, 1.55102041, 1.73469388,
1.91836735, 2.10204082, 2.28571429, 2.46938776, 2.65306122,
2.83673469, 3.02040816, 3.20408163, 3.3877551 , 3.57142857,
3.75510204, 3.93877551, 4.12244898, 4.30612245, 4.48979592,
4.67346939, 4.85714286, 5.04081633, 5.2244898 , 5.40816327,
5.59183673, 5.7755102 , 5.95918367, 6.14285714, 6.32653061,
6.51020408, 6.69387755, 6.87755102, 7.06122449, 7.24489796,
7.42857143, 7.6122449 , 7.79591837, 7.97959184, 8.16326531,
8.34693878, 8.53061224, 8.71428571, 8.89795918, 9.08163265,
9.26530612, 9.44897959, 9.63265306, 9.81632653, 10. ])
np.linspace(1,10,5)
[OUT] :
array([ 1. , 3.25, 5.5 , 7.75, 10. ])
v,c = np.unique([1,2,2,3,3,3,4,4,5],return_counts=True) #중복제거
print(v)
print(c)
[OUT] :
[1 2 3 4 5]
[1 2 3 2 1]
for a,b in zip(v,c):
print(a,b)
[OUT] :
1 1
2 2
3 3
4 2
5 1
REVIEW
- 백문이 불여일타
728x90
반응형
LIST