728x90
반응형
SMALL
import pandas as pd
import numpy as np
employee = [{'empno':1, 'ename':'kim', 'dept':1},
{'empno':2, 'ename':'lee', 'dept':2},
{'empno':3, 'ename':'park', 'dept':1},
{'empno':4, 'ename':'song', 'dept':3},
{'empno':5, 'ename':'min', 'dept':2}
]
dept=[{'dept':1, 'deptname':'관리직'},
{'dept':2, 'deptname':'영업직'},
{'dept':3, 'deptname':'개발직'}
]
info =[{'empno':1, 'addr':'서울시','phone':'010-1111-1111'},
{'empno':3, 'addr':'부산시','phone':'010-2222-2222'},
{'empno':2, 'addr':'광주시','phone':'010-3333-3333'},
{'empno':5, 'addr':'광주시','phone':'010-4444-4444'},
{'empno':4, 'addr':'광주시','phone':'010-5555-5555'}
]
emp = pd.DataFrame(employee)
dept = pd.DataFrame(dept)
info = pd.DataFrame(info)
emp
dept
info
merge(병합)
: 반드시 공통 칼럼 있어야 함
pd.merge(emp,dept)
pd.merge(emp,dept,on='dept')
pd.merge(dept,emp,on='dept')
mg = pd.merge(emp,dept,on='dept')
mg.drop(columns=['dept'],inplace=True)
mg
mg1 = pd.merge(mg,info,on='empno')
mg1.drop(columns=['empno'],inplace=True)
mg1
concat(결합)
: 공통 컬럼 없어도 됨
pd.concat([emp,dept]) #행으로 결합
pd.concat([emp,dept],axis=1) #컬럼으로 결합
review
- merge와 concat 차이점 숙지 (공통 컬럼 여부)
728x90
반응형
LIST